segunda-feira, 30 de novembro de 2009

Curiosidades matemáticas

Você conhece o número mágico?

1089 é conhecido como o número mágico. Veja porque:

Escolha qualquer número de três algarismos distintos: por exemplo, 875.
Agora escreva este número de trás para frente e subtraia o menor do maior:
875 - 578 = 297

Agora inverta também esse resultado e faça a soma:
297 + 792 = 1089 (o número mágico)

Curiosidade com números de três algarismos

Escolha um numero de três algarismos:
Ex: 234
Repita este numero na frente do mesmo:
234234
Agora divida por 13:
234234 / 13 = 18018
Agora divida o resultado por 11:
18018 / 11 = 1638
Divida novamente o resultado, só que agora por 7:
1638 / 7 = 234
O resultado é igual ao numero de três algarismos que você havia escolhido: 234.

O que é um número capicua?

Um número é capicua quando lido da esquerda para a direita ou da direita para a esquerda representa sempre o mesmo valor, como por exemplo 77, 434, 6446, 82328. Para obter um número capicua a partir de outro, inverte-se a ordem dos algarismos e soma-se com o número dado, um número de vezes até que se encontre um número capicua, como por exemplo:

Partindo do número 84: 84+48=132;132+231=363, que é um número capicua.

O que são números ascendentes?

Um número natural é chamado de ascendente se cada um dos seus algarismos é estritamente maior do que qualquer um dos algarismos colocados à sua esquerda. Por exemplo, o número 3589.

Quanto vale um centilhão?

O maior número aceito no sistema de potências sucessivas de dez, é o centilhão, registrado pela primeira vez em 1852. Representa a centésima potência de um milhão, ou o número 1 seguido de 600 zeros (embora apenas utilizado na Grã-Bretanha e na Alemanha).

Data histórica: 20/02 de 2002

Quarta-feira, dia 20 de fevereiro de 2002 foi uma data histórica. Durante um minuto, houve uma conjunção de números que somente ocorre duas vezes por milênio.

Essa conjugação ocorreu exatamente às 20 horas e 02 minutos de 20 de fevereiro do ano 2002, ou seja, 20:02 20/02 2002.

É uma simetria que na matemática é chamada de capicua (algarismos que dão o mesmo número quando lidos da esquerda para a direita, ou vice-versa). A raridade deve-se ao fato de que os três conjuntos de quatro algarismos são iguais (2002) e simétricos em si (20:02, 20/02 e 2002).

A última ocasião em que isso ocorreu foi às 11h11 de 11 de novembro do ano 1111, formando a data 11h11 11/11/1111. A próxima vez será somente às 21h12 de 21 de dezembro de 2112 (21h12 21/12/2112). Provavelmente não estaremos aqui para presenciar.

Depois, nunca mais haverá outra capicua. Em 30 de março de 3003 não ocorrerá essa coincidência matemática, já que não existe a hora 30.

Quadrados de números inteiros

O quadrado de um numero é um dos inteiros da série 1, 4, 9, 16, 25, etc. Não se torna difícil verificar a relação entre os membros consecutivos desta série. Verificamos que se somarmos o quadrado de x , mais duas vezes x mais 1 , o próximo quadrado sucessivo é obtido.

Por exemplo , 52 + 2.5 + 1 = 25+10+ 1 = 36 = 62

Se soubermos o valor de um determinado número ao quadrado, o próximo numero é facilmente obtido.
Exemplo: Sabendo que o quadrado de 18 é 324 , temos:

192 = 182 + 2.18 + 1 = 324+36+ 1 = 361

A razão para tal fato verifica-se pela relação algébrica:

(a + b)2 = a2 + 2ab + b2

19 = (18 + 1) = 182 + 2.18.1 + 12 = 361

Quadrados perfeitos e suas raízes

Os pares de quadrados perfeitos:

144 e 441, 169 e 961, 14884 e 48841

e suas respectivas raízes:

12 e 21, 13 e 31, 122 e 221, são formados pelos mesmos algarismos, porém escritos em ordem inversa.

O matemático Thébault investigou os pares que têm esta curiosa propiedade. Encontrou, por exemplo, a seguinte dupla:

11132 = 1.238.769 e 31112 = 9.678.321

O que representa o número Pi?

O número PI representa o valor da razão entre a circunferência de qualquer círculo e seu diâmetro. É a mais antiga constante matemática que se conhece. É um número irracional, com infinitas casas decimais e não periódico.

O que são números amigáveis?

Números amigáveis são pares de números onde um deles é a soma dos divisores do outro.Como exemplo, os divisores de 220 são: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 e 110 cuja soma é 284. Por outro lado, os divisores de 284 são: 1, 2, 4, 71 e 142 e a soma deles é 220. Fermat descobriu também o par 17.296 e 18.416. Descartes descobriu o par 9.363.584 e 9.437.056.

Você sabe quantas casas decimais do número Pi são conhecidas?

São conhecidas 51539600000 casas decimais de Pi, calculadas por Y. Kamada e D. Takahashi, da Universidade de Tokio em 1997. Em 21/8/1998 foi calculada pelo projeto Pihex a 5000000000000a. casa binária de Pi.

MATEMÁTICA EXPLICA UNIÃO ENTRE CÉLULAS PARA FORMAR TUMORES

Foto: Divulgação
Após divisão celular, 'células-filhas' cooperam entre si

Quem nunca ouviu de um professor de matemática na escola que os números traziam explicações para tudo? Pois um grupo de cientistas dos Estados Unidos acaba de dar mais munição para os mestres que lutam para atrair a atenção dos alunos para a importância de sua disciplina. Por meio de uma teoria matemática, eles explicaram um comportamento de células que causam o câncer e podem, ainda, ter descoberto um caminho para um novo tratamento contra a doença.

Segundo as teorias atuais, um câncer se forma a partir da divisão de uma única célula, que sofre mutação após ser estimulada por “evento cancerígeno” – a exposição solar, o fumo ou um vírus, por exemplo.

Sozinha, essa célula inicial não tem como formar uma população de células malignas – um tumor. Mas, ela continua se multiplicando até que erros no seu DNA façam surgir outras células, “células-filhas” ou “subclones”, geneticamente diferentes entre si.

Com DNA diferente, as “células-filhas” se desenvolvem separadamente umas das outras. Só sobrevivem para formar um tumor se sofrerem todas as mutações necessárias para vencer o sistema imunológico – como, por exemplo, capacidade de formar novos vasos sanguíneos e insensibilidade aos sinais que o organismo envia para interromper a multiplicação celular. Esse processo não é nada eficiente, pois até uma delas adquirir todas essas mutações, muitas outras já pereceram.

Ao observar o comportamento dessas células cancerígenas, o pesquisador Robert Axelford, da Universidade de Michigan, um entusiasta da Teoria dos Jogos – teoria matemática que estuda a cooperação entre “jogadores” para melhorar seus ganhos -, enxergou uma espécie de “colaboração” entre elas.

-- Quando vi uma simulação em computador do crescimento de células cancerígenas, observei interações entre as células --, disse ele.

Segundo Axelrod e sua equipe, as células cancerígenas podem ser capazes de dividir entre si os benefícios conseguidos com suas mutações individuais para, juntas, formarem tumores.

Já que com apenas uma mutação morreriam, elas se unem. Uma célula capaz de estimular a formação de novos vasos beneficia todas as suas vizinhas. Uma das vizinhas, que seja capaz de se multiplicar indefinidamente, faz o mesmo. Unidas, ficam mais fortes e aceleram o processo de formação de tumores.

Axelrod afirma que sua pesquisa não invalida as teorias anteriores, mas acrescenta uma nova perspectiva para o tratamento do câncer. Se for possível impedir essa união que apóia as células antes de elas se tornarem tumores, os médicos podem ganhar uma nova forma de tratar a doença.

A pesquisa está na edição desta semana da revista “PNAS” (“Proceedings of the National Academy of Sciences”).

terça-feira, 17 de novembro de 2009

Descomplicando Matemática


Sabia que você teve dificuldade com matemática
porque traduziram ela de modo maluco?
Sabia que isso tem cura?

Confere ai...
Abraço a todos...

Fisica



segundo nosso amigo Fernando:

esse link é de um video que mostra algo sobre a anulação de forças de vetores iguais porem opostos..

Ta em japones mas da pra enteder a ideia

Uma camionete anda a 100 km/h e em cima tem uma maquina que joga uma bola a 100 km na direção oposta...

bem legal

Fernando Itapema.

-Valeu Fernand.